
Occlusion Culling
Using

Minimum Occluder Set and Opacity Map

Poon Chun Ho Wenping Wang
Department of Computer Science and Information Systems

University of Hong Kong
{ chpoon | wenping } @csis.hku.hk

Abstract
The aim of occlusion culling is to cull away a significant
amount of  invisible primitives at different viewpoints. We
present two algorithms to improve occlusion culling for a
highly occluded virtual environment. The first algorithm
is used in pre-processing stage. It considers the combined
gain and cost of occluders to select an optimal set of
occluders, called minimum occluder set, for each
occludee. The second algorithm uses the improved
opacity map and sparse depth map for efficient run-time
overlap tests and depth tests, respectively. Without using
pixel-wise comparison, this algorithm uses only three
integer operations to perform an overlap test, and carry
out a depth comparison sparsely. Both algorithms have
been implemented and applied to test a model composed
of about three hundred thousand polygons. Significant
speedup in walkthroughs of the test model due to our
algorithms has been observed.

1
�

Introduction

In many applications the demand for interactive
display of complex geometric environments composed of
millions of geometric primitives always outpaces the
advance of the high-end graphics technology. These
include interactive visualisation of architectural models
and walkthrough of outdoor scenes. The models found in
these applications normally have high depth complexity.
An efficient algorithm for identification of hidden
primitives is critical to interactive rendering, while pixel-
level culling, such as hardware z-buffering, is no longer
enough to determine visibility in real-time. An occlusion
culling algorithm makes use of occlusion relation among
the primitives of the model, and culls away a significant
amount of invisible primitives at different viewpoints
quickly, in order to achieve an interactive frame rate.

There are two stages in an occlusion culling
algorithm: selection of occluders, which is usually off-
line for a static environment, and actual invisible surface
culling with occluders, which is a run-time operation for
real time rendering.

In this paper, we present two new algorithms:
1. a novel method to select occluders with multiple

criteria at pre-processing stage, using the idea of the
minimum occluder set (MOS). The MOS of an
occludee is the minimal set of primitives that
occludes the occludee.

2. an efficient occlusion culling algorithm using the
opacity map (OM) and sparse depth map (SDM),
which are applied to the spatial hierarchy of the
whole model at each frame at run-time.
Though we perform occluder selection using the

minimum occluder set, the culling part makes no
assumption about the model and occluders, and can
therefore be carried out along with occluders selected
with any other criteria.

We shall briefly discuss related work in the section 2.
In the section 3, we present an overview of our occlusion
culling approach. Details of the minimum occluder set
algorithm and the occlusion culling algorithm using the
opacity map and sparse depth map will be presented in
sections 4 and 5, respectively. The result and analysis are
given in section 6, and the paper concludes in section 7.

2
�

Related Work

Hidden surface removal is a fundamental problem of
computer graphics. The conventional z-buffer algorithm
is implemented in hardware or software [2, 3] that yields
exact visibility information by pixel-wise comparison of
depth values of every primitive.

The binary space partitioning (BSP) tree algorithm
[6, 12], which refines the work in [13], determines visible
primitives in a static environment from an arbitrary



viewpoint. After building the BSP tree, one can have a
linear query response of visibility sorting for the whole
set of primitives.

Based on probabilistic geometry, an efficient and
randomized algorithm for hidden surface removal is
presented in [11]. Further research in computational
geometry on randomized algorithms for maintaining a
BSP tree for a dynamic model has been conducted [1,
16], which, however, does not lead to practical results.

The potentially visible set (PVS) [10, 15] is designed
for indoor architectural walkthrough systems. It divides
the entire model into cells, and computes cell-to-cell
visibility at the pre-processing stage. Combined with a
view cone, one can obtain a tight bound for the visible
primitives (eye-to-cell visibility) at run-time.

For densely occluded scenes, hierarchical z-buffer
visibility [7] is exploited to speedup the conventional
depth value comparison during rasterization process.
With z-pyramid, this method allows quick termination of
depth comparison for the nodes of octree hierarchy far
away from the viewpoint. It performs efficiently when is
implemented in hardware. Hierarchical polygon tiling [8]
combines z-pyramid to further reduce the rasterization
time with triage coverage masks. It traverses the convex
polygons in front-to-back order, and culls off polygons
that are covered in image hierarchy.

The occlusion culling algorithm in [4, 5] computes
the separating and supporting planes for each pair of
occluders and the nodes of the model hierarchy. If the
viewpoint is found inside the supporting frustum, then its
corresponding node is considered as completely occluded.
The algorithm takes the advantage that frustum is
constant and has to be computed only once for static
models. However, it is relatively computationally
consuming, especially with a floating point
implementation. Another occlusion culling algorithm [9]
applies shadow frusta that are extended from the
viewpoint, and uses several large occluders as bases, and
then culls off object nodes which are inside the frusta.
This approach is limited with the number and the shape of
occluders. Later, the same authors proposed a visibility
culling algorithm using hierarchical occlusion maps
(HOM) [17]. Our approach is closely related to this work.
The main innovations of HOM are occluder fusion and
efficient usage of conventional hardware acceleration.

Recently, the problem of exact visibility sorting of
geometric objects without the help of hardware z-buffer is
addressed in [14]. Instead of using conventional 3D
rendering, it produces a sequence of layered images from
a set of geometric parts, and uses them to compose the
final image. This approach does not demand fast 3D

graphics hardware, and relies mainly on general
computation and 2D image operations.

Figure 1: The occlusion culling algorithm using
opacity map acts as a fast filter to cull away a
large portion of hidden primitives in the model
database.

3� Overview

We first divide the entire model into hierarchical
bounding volume, by constraining that the leave nodes of
the tree contain at most 256 primitives. Our approach
makes use of occluders that are selected carefully in the
pre-processing stage, to cull away a large portion of
hidden nodes of the hierarchical bounding volume tree at
run-time. Figure 1 shows the process flow of the
rendering pipeline integrating this approach.

At the pre-processing stage, we construct the
occluder database for certain grid points of the whole
environment, using the minimum occluder set algorithm.
The minimum occluder set is a minimal set of primitives
that occlude one occludee. Note that an occludee may
have several different minimum occluder sets. We
compute the minimum occluder sets only for the
occludees with more than 20 primitives. After grouping
and sorting, the optimal set of occluders can be found out.

At the run-time, the algorithm performs the following
tasks at each frame:
1. To query the occluder database, and retrieve the

occluder list from the grid point nearest to the current
viewpoint.

2. To render the retrieved occluders off-screen by
conventional graphics hardware with frame and
depth buffers. As we only need the image bitmap and
depth value of the occluders, this rendering process is
optimised by ignoring light and material setting. The
resolution applied can be lower than the final display.

3. The resulting buffer contents are used to construct
the opacity map and sparse depth map, respectively.

����� ����	�
�	�

����
��	


������
�

�������

���� ��

�������	 ��


���	�

���
������ ��

�
�	�

����
��	


�����	�

����
��	



4. Using the opacity map and sparse depth map, we test
recursively occlusion with the rectangular bounding
box of the node’s projected image. The occlusion
culling consists of two dimensional overlap tests and
depth comparisons. The two dimensional overlap test
is enhanced by using only three integer additions or
subtractions, while the depth comparison is carried
out sparsely.

5. Finally, the nodes not culled in the occlusion culling
step are regarded as conservatively visible and fed
into the hardware z-buffer algorithm for exact
visibility determination.

Figure 2: The idea of MOS. The primitives and
their labels are shown in the box above. The
shaded rectangle is the image of an occludee.
The left and middle figures show two MOS (ABC
and ACD) of the same occludee, while the one
on right shows the wrong selection for MOS, as
either B or D is redundant.

4� Minimum Occluder Set Algorithm

The general occluder selection criteria involve four
major properties of a primitive. They are the size or
projected size, first-hit, redundancy and computation cost.
The former two are typically used to determine good
occluders. Note that a primitive with a large projected
size may have low depth complexity and incomplete
coverage, and that first-hit primitives usually form a super
set of the optimal set. Moreover, these do not take into
account the combined gain with its neighbour occluders.

We define the optimal set of occluders to be the set
of primitives giving the maximum ratio of its culling
percentage to its computation cost. As any single occluder
selection criterion cannot give the combined culling
percentage of the whole set of occluders, only a rough
approximation can be expected. In contrast, our scheme
tries to find out the minimum set of primitives that
occlude an occludee, as shown in Figure 2. This means
that it chooses a set of primitives at one time, instead of

picking only one primitive, which leads to more efficient
elimination than occluders with incomplete coverage.
With a suitable scoring scheme, we can find out the
optimal set of occluders at a given viewpoint. The MOS
algorithm has three major components: construction of
occluder stack, generation of MOS for each occludee, and
calculation of the score for each MOS. We pick the MOS
with the highest score, and keep checking on redundancy.

4.1 Construction of Occluder Stack

For each occludee, an occluder stack is constructed to
generate MOS for each occludee. It is a three dimensional
array, with the rectangular base of the same size as the
bounding box of the projected image of the occludee in
the screen space. After depth sorting, if a primitive is in
front of the occludee and covers some pixels of the
occludee’s projected image, the identifier of the primitive
is pushed into the stack at the location of the covered
pixels, as shown in Figure 3. With hardware graphics
pipeline, the projected image of occludees and primitives
can be found quickly.

Ideally, we would like to construct the occluder stack
for all occludees. But it may need too much memory and
time. In order to make it practical, the algorithm filters
out the less significant occluders and occludees, such as
tiny occluders and occludees containing only few
primitives.

4.2 Generation of Minimum Occluder Set

After constructing the occluder stack, the algorithm
first sorts the pixels of the occludee rectangular base, in
ascending order of the number of primitives’ identifier it
contains, and builds up a table as shown in Figure 3. If
there are pixels that are covered by no primitive, this
occludee is regarded as visible and the search for this
occludee’s MOS stops. The first row of the combination
table shows the number of primitives that cover different
pixels. The first column indicates that there are pixels
covered by only one primitive (A or C), while the second
column indicates that there are some pixels covered by
two primitives, and similar for the rest. In other words,
one slot represents a group of pixels that are covered by
the IDs (primitives) it contains.

A slot will be cancelled if any of its IDs has been
picked to be in intermediate MOS. For example, if the
primitive A is picked, all slots containing A will be
cancelled. If all slots of combination table have been
cancelled, the occludee is completely covered by the
current MOS, which will be stored into MOS database.
Thus, finding one MOS of an occludee is equivalent to
finding one combination of primitives that cancel all the

- A - B - C - D

ACDABC ABCD



slots - the whole combination table. In order to find all
MOSs of an occludee, an exhaustive search is carried out,
for all the combination of primitives inside the table.

We run through the table from left to right, as it
usually gives early termination. We simply pick the IDs
of first column’s slots as intermediate MOS, and cancel
the associated slots. Then we concatenate the first IDs of
the first remaining slot, and cancel the corresponding
slots repeatedly. If the whole table is cancelled, we save
this intermediate MOS in MOS database. Afterwards, we
backtrack to the last concatenated ID’s slot, remove the
last ID from the intermediate MOS, recover the slots it
cancelled, and try the next allowable ID in the same slot,
and cancel the corresponding slots repeatedly, until we
get another MOS. If there is no next allowable ID in the
same slot, we backtrack further to the previous
concatenated ID’s slot, one step back at a time, until we
find out all the MOSs. According to Figure 3, we first
collect A and C as intermediate MOS. Then, only the
third slot (BD) of second column remains. Hence, the
MOSs of this example are ABC and ACD.

An upper bound on the complexity of an exhaustive
search is O(n!), where n is the number of different
primitives of the table. Though it is run at pre-processing
stage, shorter computation time is preferred. In practice,
we usually do not need to compute all MOSs of each
occludee; only the cheapest (in cost) portion of MOSs for
each occludee will be kept. A pruning technique is
applied to shorten the exhaustive search. If we find that
the intermediate MOS already has higher cost compared
with the ones inside the MOS database, we backtrack
immediately. This leads to a quicker termination, and is a
trade off for efficiency.

Figure 3: Occluder stack and combination table.

4.3 Scoring and Selecting

Each MOS has its gain and cost. The gain is the
number of occludees it occludes, and the cost is the
computation time for processing the MOS during
occlusion culling at run-time. The gain is found by
grouping the identical MOSs of all occludees together. If
an MOS S1 is the superset of MOS S2, the algorithm adds
the gain of S2 to S1. This approach explores the
effectiveness of occlusion fusion. The cost of MOS is
usually the rendering cost, as the occlusion culling will
render all the selected occluders at each frame at run-
time. This value is approximated by the number and the
total projected sizes of occluders that the MOS contains.
The number of occluders increases geometric
computation, while their image sizes affect the
rasterization time. Combining the gain, cost and user
preference, the algorithm assigns a score to each MOS.

After sorting, the algorithm collects the top portion
of MOSs up to a user defined limit. In order to remove
redundant occluders that are contained in more than one
MOS, or even hidden by occluders with higher scores, the
algorithm makes use of ID rendering, that is, to render
the occluders into the frame buffer with their IDs for
rasterization, instead of their colours. With ID rendering,
the redundant or hidden occluders will not be found in the
ID buffer. The algorithm overlays the ID rendering of
each MOS to the previous ID buffer, and repeats until the
number of selected occluders reaches the limit. The final
set of optimal occluders for the whole scene from a fixed
viewpoint is then extracted from the ID buffer. This
process of selecting MOS is essentially repeated for all
representative viewpoints in different directions.

5� Occlusion Culling

The occlusion culling consists of three parts. These
are view frustum culling, overlap test with the opacity
map, and depth comparison with the sparse depth map.
The view frustum culling is the typical one to apply on
the hierarchical bounding volume tree at first. It culls
away the nodes falling outside the view frustum, but not
those hidden by occluders. In the occlusion culling
algorithm an occludee is occluded if (a) the bounding box
of its projected image is completely covered by
occluders’ image; and (b) the nearest depth value of
occludee is farther than the depth values of occluders.
The overlap test and depth comparison are applied to
check these two conditions. If a node passes through both
tests, it is hidden by the selected occluders; otherwise, the
occlusion culling continues for its children recursively.

no. of
primitives

1 2 43

A
C

A
C

B
C

C
D

A
B

C
A

B
D

A
B

C
D

A
C

D

B
D



The straight forward solution to the overlap test and
depth comparison is by a pixel-wise test. But its
computation cost is prohibitive for interactive display. In
contrast, the opacity map needs only two integer additions
and one subtraction to do the overlap test. The sparse
depth map further simplifies depth comparison. In this
section, the opacity map and sparse depth map, as well as
their uses and features will be described.

Figure 4: (a) The back buffer for rendering the
occluders. The grey area is covered by all
occluders. (b) The bitmap of the occluders. (c)
The opacity map, and the shading showing the
usage of opacity function.

5.1 Opacity Map

The opacity map is a two dimensional array of the
scaled size of the final image, and stores the opacity
values at each pixel. The opacity value of a pixel is the
number of pixels , being covered by occluders and laying
inside the rectangular area from lower left corner up to
the pixel. In Figure 4, pre-selected occluders are rendered
off-screen to produce the bitmap of the occluders’ image.
The bitmap is generated in the back buffer by graphics
hardware. A 1 in the bitmap indicates that the pixel is
covered by occluders, with 0 indicating not. The opacity
value of the black box in (c) is equal to the number of 1’s
in the black bordered region in (b). The algorithm uses
scan-line conversion to calculate the opacity values at
each pixel. A row and column of zeros are added to
eliminate the boundary cases during overlap test. For
simplicity, we do not show them in the figure. As these
zeros do not need to be updated, they are ignored at the
construction phase of the opacity map. The resolution of
the opacity map used for the model tested in this paper is
128�128, excluding the first row and column of zeros,
while the displayed image resolution for the final images
are 512�512 or 1024�1024. We feel that this is a good
balance between the accuracy and computation time.

5.2 Overlap Test

The aim of the overlap test is to check whether the
rectangular area of the projected image of an occludee is
completely covered by occluders’ images. In other words,
it checks if the area of occludee’s image is fulfilled by 1s
in the bitmap. With the opacity map, this query can be
done by opacity function (OPF),
OPF(x 1,  x 2, y 1,  y 2 ) =
Op(x 1,y 1) - Op(x 1,y 2) - Op(x 2,y 1) +
Op(x 2,y 2)
where ����� �� means the opacity value at co-ordinates
��� �� in the opacity map, while the lower left corner of
the opacity map has the co-ordinates (1, 1). The OPF
calculates the number of 1’s in the rectangular region
(��������� ��������) of the bitmap. Figure 4c shows
the application of OPF to do overlap test for one
occludee. The dash lines border the rectangular region
(2<x<=5, 1<y<=5), which is the occludee’s projected
image. The region has 12 pixels in total. Then, we
calculate,
OPF(2, 5, 1, 5)
= Op(2, 1) – Op(2, 5) – Op(5, 1) +
  Op(5, 5)
= 2 – 9 – 5 + 18
= 6

It means that the occluders cover only 6 pixels inside
this region. Compared with the region size (12 pixels), the
occludee is not occluded by the occluders and therefore
fails the overlap test.

Besides the benefit of occluder fusion, the opacity
map allows the overlap test of one occludee to be done
with only two additions and one subtraction. Moreover,
two more modifications can be made to perform
approximate overlap tests and adaptive overlap tests.

Approximate Overlap Test: For a highly dense scene
composed of many tiny primitives, such as a bottle full of
small stones, a certain tolerance can be added to the
opacity function. This makes the overlap test ignore some
holes of the occluders’ image, and regard the almost
entirely hidden nodes being occluded. Using the opacity
map, this modification is easy to achieve.

Adaptive Overlap Test: In order to balance the
computation time of the occlusion culling algorithm and
rendering process, a coverage ratio threshold is used to
trigger a stop signal to the recursive occlusion culling
algorithm. The coverage ratio is the ratio of result of the
opacity function of one occludee to its rectangular image
size. If the occludee has a coverage ratio less than 0.2, the
algorithm stops testing its descendants, as in this case the

(a) (b) (c)



occluders cover too little area of the occludee and have
low chance to completely cover the occludee’s
descendants. Consequently, those descendants are
regarded as conservatively visible. The threshold will be
adjusted according to the culling time, and prohibits the
extra occlusion culling in the case where the rendering
capacity is much larger than the number of primitives
falling in the view frustum.

Figure 5: One row segment of the sparse depth
map. It is the top view of an occludee (the grey
rectangular box), and some occluders (the black
lines). The two black dots mark the local farthest
pixels (with the locally largest depth values) of
this segment, called the peaks.

5.3 Sparse Depth Map

The sparse depth map is an auxiliary data structure of
the depth map, which is generated at the same phase of
off-screen rendering. The depth map is a two dimensional
array recording the depth values (nearest) of the
occluders. In a general approach, the depth comparison is
carried out for every pixel the occludee covers. But there
is depth coherence in the same row, especially in the case
of the same occluder. In a row, the depth value varies in
three modes, near-to-far, far-to-near or still; and this can
be plotted as a line segment chart, where the line segment
increases, decreases or keeps flat. With the chart, we
locate the local peaks, which has the largest depth values
locally, as shown in the Figure 5. The algorithm now only
seeks the local peaks of the occluders, instead of every
pixel. The sparse depth map is constructed to store the
number of pixels apart from the nearest local peak to the
right.

To construct the sparse depth map, the algorithm
transverses the depth map from the upper right corner to
the bottom left, row by row. An integer variable step is
used to record the number of pixels that can be skipped.
Ignoring the border case, it tests two consecutive (named
current and last) pixels. If they are increasing or keeping
still, the algorithm adds one to the step variable and saves
it into current pixel of sparse depth map. Otherwise, if the
previous test shows increasing and keeping still, the
current pixel is the peak. It stores step plus one into the

peak pixel of the sparse depth map, and then resets the
step to one.

To reduce the construction time of the sparse depth
map, the algorithm does not compute the row of pixels
that are covered by no occluders, because those rows will
not be used for the depth comparison. As the sparse depth
map exploits the pixel coherence, if the depth map varies
from near-to-far and far-to-near alternatively each pixel,
the sparse depth map will contain all 1s. This means there
is no pixel that can be skipped, and the algorithm will test
every pixel as the usual depth comparison. In this case,
the sparse depth map should be disabled, in order to save
the construction time. The resolutions of depth map and
sparse depth map used in our tests are the same as the
opacity map, i.e. 128�128.

5.4 Depth Comparison

The depth comparison uses both the depth map and
sparse depth map. For an occludee, the algorithm finds
the nearest depth value of its bounding volume. This
simplifies the depth comparison, and also guarantees the
correctness of the culling algorithm. The depth
comparison is applied to the rectangular projected area of
the occludee. It tests the depth from the bottom row to the
top of the rectangular area. For one row, it first tests the
depth value of the leftmost pixel. If the nearest depth
value of the occludee is large than the pixel value of the
depth map, it will test the next-jump pixel indicated in the
sparse depth map. Otherwise, the occludee is in front of
the occluder and the depth test fails and terminates.

Figure 6: Frame rate and culling percentage of
different occluder selection methods. PS stands
for the criterion of projected size, FH stands for
the criterion of first-hit.

PS MOS FH

0

4

8

12

16

20

32 192 768

#  of Occluders

0

25

50

75

100

32 192 768

#  of Occluders

view
direction



6� Results and Analysis

We have implemented the above algorithms on a
simple walkthrough system, which uses OpenGL and
runs on SGI Max IMPACT workstation with R10000
CPU (200MHz) and 192 MB RAM. In this section, we
demonstrate the performance of the minimum occluder
set algorithm and occlusion culling using the opacity
map. The test model is composed of thirty copies of a
Chicago city model and contains 300,540 polygons in
total.  The whole environment uses one light and no
texture. An overview of the test model is shown in Figure
11.

Figure 7: The top view of model. The light grey
boxes are outside the view frustum, the dark
grey boxes are culled by occluders and the
black boxes are conservatively visible. From the
left to right, the figures show the cases (a)
projected size, (b) MOS and (c) first-hit criteria
respectively.

6.1 MOS Algorithm

In the following tests, we compare the performances
of different occluder selection criteria. They are the
projected size, MOS, and first-hit. The experiment is
carried out at a certain viewpoint that gives about 400
visible primitives in 512�512 resolution. For the criterion
of projected size, we simply pick occluders in the
descending order. For the first-hit criterion, we first find
out all the visible primitives, and count the number of
pixels covered by these primitives. Afterwards, we
choose the occluders in the descending order. We record
the frame rate and culling percentage, varying the
maximum number of occluders used.

Figure 6 shows that the MOS algorithm needs 192
occluders to achieve the optimal culling percentage, about
94%. The criterion of first-hit uses about 384 occluders to
reach the same culling percentage. The projected size
criterion has about 93% culling with 512 occluders. The
culling percentage of the projected size criterion has the
slowest growth rate. Also, more occluders are used, more
computation overhead is introduced for occlusion culling,

thus decreasing the frame rate shown in the tail part of the
curve. The MOS algorithm uses a half of occluders as by
the first-hit criterion to yield the optimal culling
percentage, as it considers the combined gain and
redundancy of primitives. These points are illustrated in
Figure 7, which shows the top view of the whole model.
The light grey boxes are nodes outside the view frustum,
and the dark grey boxes are culled away by the occluders.
These are the results when 192 occluders are used. Except
in the MOS algorithm, the incomplete coverage caused by
other two methods reduces the culling percentage, while
the redundancy of occluders leads to increased overhead
without improving culling ratio.

Figure 8: Performances of occlusion culling with
different routes. Nil  represents that no culling is
applied. VF represents that view frustum culling
is applied. OM represents that occlusion culling
with opacity map and sparse depth map is
applied. PC means occlusion culling with pixel-
wise comparison.

Nil VF OM PC

0

10

20

30

40

1 41 81

F rame #

0

20

40

60

80

100

1 41 81

F rame #
Best Case

0

10

20

30

40

1 41 81

F rame #

0

20

40

60

80

100

1 41 81

F rame #
Average Case

0

20

40

60

80

1 41 81

F rame #

0

20

40

60

80

100

1 41 81

F rame #
Worst Case

(a) (b) (c)



6.2 Occlusion Culling

We have conducted two groups of tests for the
occlusion culling. The first group is aimed to illustrate the
speedup of occlusion culling with different depth
complexities; and the second group shows performances
and bottleneck at different resolutions.

Figure 9: Performances of occlusion culling with
different occluder selection criteria for the best
case route. PS, MOS and FH represent the
criteria of projected-size, minimum occluder set
and first-hit, respectively.

Tests at Different Routes: The following three tests are
carried out with the same Chicago model, but alone
different routes. The three routes are located with
different depth complexities, and classified as best,
average and worst cases for the speedup. The tests use 64
occluders and have 512�512 resolution. The three routes
have 120 frames each.

For the best case, the route starts at the lower left
corner of the environment, and heads towards the center
part. It has the highest depth complexity. The speedup of
occlusion culling to view frustum is 14.6 and the average
frame rate is 25.5. For the average case, the route is
located at the center of the environment, the depth
complexity is medium. It has the speedup of 4.4 and
average frame rate of 26.7. For the worst case, the route is
set at the upper right corner of the environment, with the
viewer looking outwards. It has lowest depth complexity,
and the speedup and average frame rate are 0.7 and 34.6,
respectively. For reference, the frame rate of occlusion
culling with pixel-wise comparison is also shown in
Figure 8. It has the average frame rate of 17.7, 19.4 and
28.8 for the three routes, respectively.

According to Figure 8, the occlusion culling has
adverse effect on the frame rate in the worst case. That is
because the computation cost of view frustum culling is

lower than occlusion culling. If the environment has low
depth complexity, occlusion culling causes overhead
instead of profit to culling percentage.

Figure 9 shows the performance of occlusion culling
using different occluder selection criteria for the best case
route. The average frame rates for projected size and first-
hit criteria are 5.4 and 24.5, relatively. The difference
between MOS and first-hit criteria decreases
progressively in the first twenty frames, and their
performances are similar in the remaining frames. That is
because the routes do not have too much visible
primitives, so the superset of occluders (first-hit ones)
converges to the optimal set after the first twenty frames.

Tests at Different Resolutions: The performance of
occlusion culling using the opacity map is shown in
Figure 10. The test is based on the best case route, using
MOS. The two figures show the results of view frustum
culling and occlusion culling at resolutions of 512�512,
768�768 and 1024�1024. The average frame rates are
25.6, 20.1 and 16.7 of the three ascending resolutions. As
the sizes of opacity map and sparse depth map applied for
three resolutions are the same, their culling percentages
are constant. It is regarded as no change for the geometric
computation. The drop in frame rate is caused by the
rasterization of hardware rendering process, which is also
the bottleneck of walkthrough system now. Although the
frame rates of 768�768 and 1024�1024 resolutions are
lower, we still have a speedup of 9.8 and 11.6
respectively.

Figure 10: (a) Performances of occlusion culling
using opacity map and MOS algorithm at
different resolutions, 512 ��512, 768��768 and
1024��1024, (b) The result of view frustum.

PS MOS FH

0

10

20

30

40

1 41 81

F rame #

0

20

40

60

80

100

1 41 81

F rame #

0

10

20

30

40

1 41 81

F rame #

1.5

1.6

1.7

1.8

1.9

1 41 81

Frame #

512 768 1024

(a) (b)



7� Conclusions and Future Work

We have presented an occlusion culling algorithm
(MOS algorithm) using the minimum occluder set and
opacity map. Our algorithm results in significant speedup
of the frame rate and a reduced number of occluders
required. The speedup by occlusion culling is due to the
use of the opacity map and sparse depth map. The opacity
map needs only two integer additions and one subtraction
to do the overlap test. The sparse depth map further
simplifies depth comparison, by not using pixel-wise
comparison. Moreover, the high culling percentage is
achieved by the MOS algorithm, which takes into account
the combined gain and redundancy of occluders. The
occlusion culling algorithm makes no special assumption
on occluders and models and is suitable for
implementation on current graphics systems.

Further research includes the extension of the MOS
algorithm to dynamic environments and integration with
impostors for scalability. The MOS algorithm can be
adapted to a dynamic model if the probability of dynamic
occlusion is considered in the process of scoring. For an
environment with a large number of visible primitives, we
can apply impostors [18] for distant objects. Integration
with impostors would make a walkthrough system into a
semi-image-based VR system. Thus we would still have
geometric data for nearby objects, which allows collision
detection and interaction for the users, and the total
number of primitives handled by graphics hardware is
greatly reduced since distant primitives are represented as
impostors.

Figure 11: A birdeye view of the test model,
which is composed of thirty copies of a Chicago
city model and contains 300,540 polygons in
total.

8� Acknowledgements

We thank Mr. Cheng Kin Shing for his contributions
and many discussions during the formative phase of this
work.

9� References

1. P. K. Agarwal, L. J. Guibas, T. M. Murali and J. S. Vitter.
Cylindrical Static and Kinetic Binary Space Partitions.
Computational Geometry ’97, pp. 39-48.

2. K. Akeley. RealityEngine Graphics. SIGGRAPH ’93, pp.
109-116.

3. E. Catmull, A Subdivision Algorithm for Computer
Display of Curved Surfaces. PhD thesis, University of
Utah, 1974.

4. S. Coorg and S. Teller. Temporally Coherent Conservative
Visibility. Symposium on Computational Geometry 1996,
pp. 78-87.

5. S. Coorg and S. Teller. Real-time Occlusion Culling for
Models with Large Occluders. Symposium on Interactive
3D Graphics 1997, pp. 83-90.

6. H. Fuchs, Z. M. Kedem, and B. F. Naylor. On Visible
Surface Generation by A Priori Tree Structures.
SIGGRAPH ’80, pp. 124-133.

7. N. Greene, M. Kass and G. Miller. Hierarchical Z-Buffer
Visibility . SIGGRAPH ’93, pp. 231-238.

8. N. Greene. Hierarchical Polygon Tiling with Coverage
Masks. SIGGRAPH ’96, pp. 65-74.

9. T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff and H.
Zhang. Accelerated Occlusion Culling using Shadow
Frusta. Computational Geometry ’97, pp. 1-10.

10. D. Luebke and C. Georges. Portals and Mirrors: Simple,
Fast Evaluation of Potential Visible Sets. Symposium on
Interactive 3D Graphics, 199, pp. 105-106.

11. K. Mulmuley. An Efficient Algorithm for Hidden Surface
Removal. SIGGRAPH ’89, pp. 379-388.

12. B. Naylor. Partitioning Tree image Representation and
Generation from 3D Geometric Models. Graphics Interface
’92, pp. 201-211.

13. R. Schumacker, B. Brand, M. Gilliland, and W. Sharp.
Study for Applying Computer-Generated Images to Visual
Simulation. Technical Report AFHRL-TR-69-14. 1969.

14. J. Snyder and J. Lengyel. Visibility Sorting and
Compositing without Splitting for Image Layer
Decomposition. SIGGRAPH ’98, pp. 219-230.

15. S. Teller and C.H. Sequin. Visibility Pre-processing for
Interactive Walkthroughs. SIGGRAPH ’91, pp. 61-69.

16. E. Torres. Optimization of the Binary Space Partition
Algorithm for the Visualization of Dynamic Scenes.
Eurographics ’90, pp. 507-518.

17. H. Zhang, D. Manocha, T. Hudson and K. E. Hoff III.
Visibility Culling using Hierarchical Occlusion Maps.
SIGGRAPH ’97, pp. 77-88.

18. F. Sillion, G. Drettakis, B. Bodelet. Efficient Impostor
Manipulation for Real-Time visualization of Urban
Scenery. Eurographics ’97, pp. 207-218.


